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Coiled Tubing Forces and Stresses
Modeling Improvements

by: Ken Newman, CTES, L.C./Drexel

Tubing Forces - BHA Bending Friction

As CT sizes and services increase, the sizes are also increasing. When a long, stiff BHA is
bent around a curve in the well, additional friction is created with the wellbore. This
additional friction can significantly change the forces required in the CT to convey the BHA.
Initial tubing forces models (TFMs) did not consider this additional friction.

Figure 1 shows three cases for BHA bending. The first case shows a rigid, unbent tool in
the curvature of the well. This case shows the longest rigid length the tool can have and still
fit in the curve. There is no additional friction if the tool is no longer than this rigid length.
The maximum rigid length of the tool is:

L, =2{(4R + 2d)A

where:

d = tool diameter

R = radius of curvature of the wellbore

A = the radial clearance between the wellbore and the tool

Since 4R is obviously much larger than 2d, this equation can be simplified to:

L, =4vRA

The second case shows the tool somewhat bent, but only contacting the wellbore at one
point on the top. This case applies for tool lengths between L, and L,, where:

L, = 443RA

In the third case the tool is bent further, and wraps around the wellbore for a distance. In
this case the tool is in contact with the upper surface of the wellbore for an extended
distance. This case applies for tool lengths greater than L,.

The additional axial force required to overcome the friction caused by the BHA bending
when the tool length is greater than L, is given by:

Fana = 4Pu

where L is the friction coefficient and P is given by:
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where:

| is the moment of inertia of the tool

E is the modulus of elasticity

L is the tool length or L,, whichever is less

When the additional friction caused by the BHA is included in a TFM, the resuit can be very
significant. Figure 2 shows an example model output without including the BHA friction,
while Figure 3 shows the same output with BHA friction included. Sometimes the additional
friction from a BHA passing around a curve or dog leg can be significant enough to cause
lock up to occur, and prevent further penetration into the well.

Stress Modeling Update

This author wrote an SPE paper 23131, “Coiled-Tubing Pressure and Tension Limits”,
several years ago which develops the equations to calculate the CT limits. (A copy of this
paper is attached for convenience to the reader). This is an update to that paper with a
correction to one of the equations, and the development of an improved method of
calculating the limits. To clearly understand this update the reader must first be familiar with
the equations and development presented in that paper. This update uses the same
nomenclature as is defined in that paper.

Correction:

When the axial force is less than 0, if it is assumed that the CT is buckled, and the axial
force, F,, in equation 4 of the SPE paper shouid be the equivalent force, F,, which is given
by the following equation:

Fe =Fa +A0Po —.AIP/
Equation 11 of the paper now becomes:

F,  FRr,

a

= +
G T4 -4 2l
When the axial force is equal to or greater than zero the axial stress remains as given in
equation 1 of the SPE paper.

Improved Solution:

The SPE paper substitutes the equations for the 3 stresses directly into the von Mises
equation and solves for the unknown pressure. The algebraic manipulation required to
develop this solution is very tedious. This algebraic manipulation must be repeated for to
solve for either of the pressures. This becomes even more difficuit with the correction given
above.

In this development, the solution to the von Mises equation has been generalized by writing
each of the three principal stress equations (radial, hoop and axial stresses) in the following
form:

oi=a;+ [P
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In this equation i is 1 through 3 for the 3 principal stresses. P is the unknown pressure
being solved for (either P, or P,). For the burst limits P is the internal pressure, P, and for
the collapse limits P is the external pressure, P,.

Substituting these generalized equations for the principal stresses into the von Mises
equation (equation 18 in the SPE paper) yields the following:

AP +BP+C =0

or.
' - B+VB' -44C
B 24
where:

3

A=28 BB +BA +BB)

i=l

3
B=Zﬂi(2ai —aj-—ak)
i1

|
C 3 2
=zq2— ajay +aray +a1ay +O"y
i=1

where j and k are the two values from 1 to 3 not equal to i and not equal to each other.

The Lame equation for the hoop stress at the inside surface (equation 15 of the SPE paper)
is re-written as follows:

Oy = P,-((/’—l)*fl(ﬂ
where:

2
2r,

The SPE paper defines the inner most curve of 4 cases as the “limit curve”. This limit curve
is'then mulitiplied by a safety factor to establish the “working limit curve”. The unknown in
this burst calculation is the internal pressure, Pg'. For the burst limits the 4 cases are:

Case Diameter P,
1 Nominal 0
2 1.06* Nominal 0
3 Nominal Po_max
4 1.06" Nominal P,

Table 1 - Burst Cases

For the collapse limits, the externai pressure P, is the unknown, and the following 4 cases
are used:
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Case Diameter P
1 Nominal 0
2 1.06* Nominal 0
3 Nominai P: max
4 1.06" Nominal P, .

Table 2 - Collapse Cases

The following table summarizes the a and 3 terms used:

P= [udAunown Pz Po = UMepowdd
Burst Collapse
Radial Stress % =0 = -P,
o, = -P, B, = -1 B,=0
Hoop Stress
Eq-H 9 0= 0P, =P, (o- 1)
B=0-1 B=-0
Axial Stress F, >0 a3 = F/(As- A) as = FJ(A,- A)
SPE paper Eq. 1 3 _
(If not buckled) B=0 Bs=0
. F Rr F Rr
Axial Stress F, <0 — a Lo (F +p4 _ a +—2(F —p4
Eq. H 2 U4 o (Frpd) o A -4 o7 (Fa=Pa)
(If buckied)
A Rr, A, Rr,
h=="31 A 21

Table 3 - « and 3 Terms

This solution procedure is easy to implement in software and is more flexible than previous
solutions.

The results of these equations with and without helical buckling are interesting. Figure 4
shows an exampie of the results of these equations without helical buckiing and without
“imaginary points”. Imaginary points are points that are mathematically possible but would
require negative pressure either inside or outside the CT. These curves are similar to a
single von Mises ellipse. There are a few points of inflection due to the 4 cases that are
included and the elimination of the imaginary points.

Figure 5 shows the same resuits as Figure 4, but with helicai buckling included. The left
side of this curve is truncated significantly due to the inclusion of the helical buckling
stresses. Whether or not to include these helical buckling stresses in CT limit
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considerations is currently a topic of discussion. The localized yielding that would occur if
these limits were exceeded allows the CT to take on a slightly helical shape. However, the
author is not aware of any failures that have occurred due to this yielding. Thus, the author
recommends that these additional buckiing stresses not be included in CT limit
considerations.
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Figure 1
BHA Bending Cases
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Figure 2
Weight vs Depth - Without BHA Bending Friction
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Figure 3
Weight vs Depth - With BHA Bending Friction
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Figure 4
CT Limits - 1.5” X .109”, 80ksi, Without Helical Buckling
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Figure 5
CT Limits - 1.5” X .109”, 80ksi, With Helical Buckling
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